Gewinde und Endanschlüsse Identifikationshilfe

Swagelok

Inhalt

Einleitung
Gewinde und Endanschlüsse - Terminologie 5
Allgemeine Terminologie6
Systematisches Verfahren zur
Identifikation von Gewinden und
Endanschlüssen 7
Referenztabellen zur
Gewindeidentifikation 13
Kegelige Gewinde21
Endanschlüsse mit:
Kegeligen Gewinden
Zylindrische Gewinde 27
Endanschlüsse mit:
Unified Screw (Einheits-) Gewinden
ISO 228/1-Gewinden
Metrischen (ISO 261) Gewinden
NPSM-Gewinden
Anhang
Endanschluss-zu-Gewinde-Matrix 51
Gewinde-zu-Endanschluss-Matrix52
Hilfsmittel zur Gewindeidentifikation 53
Glossar 54

Über Swagelok

Swagelok ist ein führender Entwickler und Anbieter von Fluidsystemprodukten, -Systemen, Baugruppen und Serviceleistungen mit einem Firmenwert von ca. 2 Milliarden US-Dollar für die folgenden Industrien: Öl- und Gas, Chemie und Petrochemie, Halbleiter und Transport. Das Unternehmen hat seine Zentrale in Solon, Ohio, USA und unterstützt Kunden durch 200 Vertriebs- und Service-Zentren in 70 Ländern, gemeinsam mit der Expertise von 5.500 Mitarbeitern in 20 Produktionsstätten und fünf globalen Technologiezentren.

Kontaktieren Sie bitte für weitere Informationen oder Unterstützung Ihr autorisiertes Swagelok Vertriebs- und Servicezentrum oder besuchen Sie unsere Website unter www.swagelok.com.

Einleitung

Gewinde und Endanschlüsse - Terminologie

Zur leichteren Identifikation von Gewinden und Endanschlüssen werden Normen verwendet. Wir verwenden in diesem Handbuch die folgenden Definitionen:

Gewindenorm

Eine spezifische Referenz auf eine offizielle Norm (z.B. ASME B1.1., EN 10226-1 oder ISO 261), welche die Gewindeform, einschließlich Gewindewinkel, Steigung und Durchmesser beschreibt.

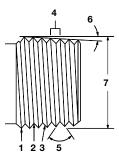
Endanschlussnorm

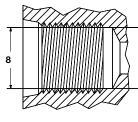
Eine spezifische Referenz auf eine nationale Norm (wie DIN 3852 oder JIS R und JIS Rc) oder eine Industriegruppennorm (wie SAE J512), welche die Komponenten, den Dichtbereich, die Geometrie und die Größen eines Endanschlusses beschreibt. Gewindenormen sind in der Regel Teil einer Endanschlussnorm.

Gewindenormen und Endanschlussnormen

Viele mechanische Endanschlüsse haben Gewinde. Daher können Gewindenormen zum Definieren von Endanschlussnormen hilfreich sein.

Steigung

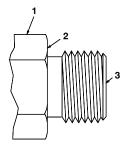

In diesem Handbuch bezieht sich der Begriff Steigung bei zölligen Gewinden und Rohrgewinden auf die Gewindegänge pro Zoll, nicht auf den Abstand zwischen den Gewindegängen. Bei allen metrischen Schraubengewinden wird mit dem Begriff Steigung der Abstand zwischen nebeneinanderliegenden Gewindegängen angegeben.


Allgemeine Terminologie

Allgemeine Begriffe und Eigenschaften, die auf alle Endanschlussgewinde zutreffen, werden untenstehend für Außen- und Innengewinde erläutert.

Gewinde

- 1. Spitze
 - 2. Gewindegrund
 - 3. Flanke
 - 4. Steigung (metrisch)
- 5. Gewindeflankenwinkel
- 6. Steigungswinkel
- 7. AD des Außengewindes
- 8. ID des Innengewindes



Außengewinde

Innengewinde

Endanschlüsse

- 1. Körpergröße
- 2. Schulter
- 3. Stirn

Endanschluss

Systematisches Verfahren zur Identifikation von Gewinden und Endanschlüssen

Schritt 1: Bestimmen, ob das Gewinde kegelig oder

zylindrisch (parallel) ist.

Schritt 2: Gewindedurchmesser messen.

Schritt 3: Gewindesteigung bestimmen.

Schritt 4: Gewindenorm bestimmen.

Schritt 5: Endanschluss identifizieren.

Hinweis: Auch erfahrene Arbeiter haben manchmal Schwierigkeiten mit der Identifikation von Gewinden; dabei spielen das Identifikationsverfahren und die Qualität

der Messgeräte keine Rolle.

Details

Schritt 1: Bestimmen, ob das Gewinde kegelig oder Z zylindrisch (parallel) ist.

Mit einem Messschieber den Durchmesser von Spitze zu Spitze am ersten, vierten und letzen vollen Gewindegang des Außen- oder Innengewindes messen (Abb. 1).

- Wenn der Durchmesser an einem Außengewindeende zunimmt, bzw. an einem Innengewindeende abnimmt, handelt es sich um ein kegeliges Gewinde.
- Wenn alle Durchmesser gleich sind, handelt es sich um ein zylindrisches (paralleles) Gewinde.

Abb. 1 Messen der Gewindedurchmesser von Spitze zu Spitze

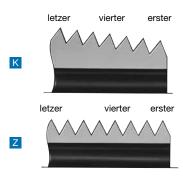


Abb. 2
Messen von Gewindedurchmessern

Schritt 2: Gewindedurchmesser messen.

Mit einem Messschieber den Durchmesser des Außenbzw. Innengewindes von Spitze zu Spitze messen (Abb. 2).

- Den vierten oder fünften vollen Gewindegang messen.
- Z Einen beliebigen vollen Gewindegang messen.

Der dabei gemessene Durchmesser entspricht nicht unbedingt genau der aufgeführten Nenngröße für das jeweilige Gewinde. Der Hauptgrund für die Abweichung sind Industrie- oder Fertigungstoleranzen.

Schritt 3: Gewindesteigung bestimmen.

Zum Bestimmen der Gewindesteigung die Swagelok® Gewindelehren verwenden und das Gewinde mit jeder Schablone vergleichen, bis Sie eine Übereinstimmung finden. Gehen Sie folgendermaßen vor, falls Sie eine Vorauswahl treffen möchten:

- a. Finden Sie den nominalen Gewindedurchmesser auf der entsprechenden Referenztabelle zur Gewindeidentifikation. Beachten Sie, dass der Gewindedurchmesser für verschiedenen Gewinde in der Regel mehrere Male aufgeführt ist.
- Gehen Sie zu den Referenztabellen zur Identifikation von kegeligen Gewinden, die auf Seite 12 beginnen.
 - Z Gehen Sie zu den Referenztabellen zur Identifikation von zylindrischen Gewinden, die auf Seite 14 beginnen.

- Gehen Sie in jedem Fall zur Spalte "Steigung", um die möglichen Gewindesteigungen für Ihr Gewinde zu bestimmen.
- Verwenden Sie die für das in Schritt b identifizierte Gewinde geeignete Gewindelehre, bis Sie eine Übereinstimmung finden (Abb. 3).

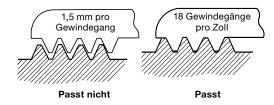


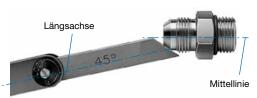
Abb. 3 Bestimmen der Gewindesteigung

Schritt 4: Gewindenorm bestimmen.

Nachdem Sie die folgenden Informationen über ein Gewinde bestimmt haben, haben Sie die erforderlichen Informationen, um es zu identifizieren:

- Außen- oder Innengewinde
- Zylindrisch oder kegelig
- Nominaler Außen- oder Innendurchmesser
- Steigung

Nehmen Sie nun die entsprechende Referenztabelle zur Gewindeidentifikation zur Hand und identifizieren Sie das Gewinde.


Schritt 5: Identifizieren des Endanschlusses.

- K Bei einem kegeligen Gewinde:
- a. Finden Sie die Endanschlüsse, die das von Ihnen identifizierte kegelige Gewinde haben. (Siehe Seiten 20 bis 25).
- Sehen Sie sich die Querschnittszeichnungen für diese Endanschlüsse an und bestimmen Sie, welche mit Ihrem Endanschluss übereinstimmt.

- Z Bei einem zylindrischen Gewinde:
- Finden Sie die Endanschlüsse, die das von Ihnen identifizierte zylindrische Gewinde haben. (Siehe Seiten 26 bis 49).
- Sehen Sie sich die Querschnittszeichnungen für diese Endanschlüsse an und bestimmen Sie, welche mit Ihrem Endanschluss übereinstimmt.

Hinweis: Der Swagelok Sitz- und Gewindelehrensatz enthält Sitzwinkellehren für 45°, 37° und 30° zur Identifikation von Endanschlüssen. (Siehe Seite 52.)

- Wählen Sie eine der Lehren aus und legen Sie den Winkel an den Sitzwinkel des Endanschlusses an.
- d. Falls die Mittellinie des Fittings und die L\u00e4ngsachse der Lehre parallel sind, stimmen der Sitzwinkel und der Lehrenwinkel \u00fcberein. Versuchen Sie es andernfalls mit einer anderen Lehre.

Passt nicht

Passt

Abb. 4 Bestimmen des Sitzwinkels

Hinweis: Die Winkel der Sitze in den Fittings betragen nicht unbedingt 45°, 37° oder 30°. Kontaktieren Sie Ihr autorisiertes Swagelok Vertriebsund Servicezentrum für weitere Informationen.

BEISPIEL:

Gewinde- und Endanschlussidentifikation (Schritte 1 bis 5)

Sie haben einen Fitting mit Außengewinde und müssen das Gewinde identifizieren.

Schritt 1: Bestimmen, ob das Gewinde kegelig oder zylindrisch (parallel) ist.

Das Gewinde ist zylindrisch.

Schritt 2: Gewindedurchmesser messen.

Der Gewindedurchmesser beträgt 0,430 Zoll.

Schritt 3: Gewindesteigung bestimmen.

 a. Gehen Sie, da es sich um ein zylindrisches Gewinde handelt, zur Referenztabelle zur Identifikation von zylindrischen Gewinden, Seite 14, und finden Sie den Gewindedurchmesser. Siehe untenstehenden Tabellenausschnitt.

Nominal Gewinde		Nominaler Außengewinde- Durchmesser			
Größe	Kennung	Zoll	mm	Steigung ^①	Seite
	Olar Olar	0,375 at 0,363	9,53 bis 9,22	240	30 ms 35
3/8	NPSM	0,658	16,71	18U	51
	ISO 228/1	0,656	16,66	19 W	36 bis 43
7/16	UNS	0,436 bis 0,429	11,07 bis 10,90	24U	30 bis 35
//10	UNF	0,436 bis 0,424	11,07 bis 10,77	20U	30 bis 35
	UNF	0,500 bis 0,487	12,70 bis 12,36	20U	30 bis 35
1/2	NPSM	0,818	20,78	14U	51
	ISD 200/1	^825	20,96	1111	30 mic 43

- $\begin{tabular}{ll} \hline \mathbb{O} & $U=U$ nified & $W=W$ hitworth & $M=M$ etrisch \\ & Beschriftung auf den einzelnen Swagelok Gewindelehren \\ \hline \end{tabular}$
- Finden Sie die entsprechenden Steigungen in der Tabelle. In diesem Fall 20 und 24.
- Also würden Sie zum bestimmen der Gewindesteigung Ihre Gewindelehren 20 und 24 verwenden.

Nehmen wir für diese Beispiel an, dass die Steigung 24 beträgt.

Schritt 4: Gewindenorm bestimmen.

Sie wissen nun, dass das Gewinde die folgenden Eigenschaften hat:

- a. Außengewinde
- b. Zylindrisch
- c. Nominaler Gewindedurchmesser von 0,430 Zoll
- d. Gewindesteigung von 24

Aus dem Ausschnitt der Referenztabelle zur Identifikation von zylindrischen Gewinden können Sie entnehmen, dass das einzige Gewinde mit all diesen Eigenschaften ein 7/16 Zoll UNS-Gewinde ist.

Schritt 5: Identifizieren des Endanschlusses.

Sie wissen jetzt, dass Sie ein 7/16 Zoll UNS-Gewinde haben. So identifizieren Sie den Endanschluss:

- Identifizieren Sie die Art der Dichtung.
- b. Gehen Sie zum Abschnitt Endanschlüsse mit UNS-Gewinden in diesem Handbuch (Seiten 28 bis 34) und finden Sie die Konfiguration, die Ihrem Endanschluss entspricht.

Referenztabellen zur Gewindeidentifikation

Kegelig-Außengewinde

Hinweis: Die gemessenen Gewindedurchmesser stimmen eventuell nicht genau mit den Angaben in der Tabelle überein. Alle Gewinde haben im Hinblick auf viele Bestandteile der Gewinde Toleranzen. Die in dieser Tabelle enthaltenen Informationen sind nicht zur Verwendung als Inspektionskriterien für Gewindefittings vorgesehen. Sie dienen als Richtlinie zur Identfikation verschiedener Gewindet.

Nominale Gewinde- größe,		Nominaler Außengewinde- Durchm.			
Zoll	Kennung	mm	Zoll	Steigung ^①	Seite
1/16	ISO 7/1	7,72	0,304	28W	26
1/10	NPT	7,84	0,308	27U	24 bis 25
1/8	ISO 7/1	9,73	0,383	28W	26
1/6	NPT	10,18	0,401	27U	24 bis 25
1/4	ISO 7/1	13,16	0,518	19W	26
1/4	NPT	13,54	0,533	18U	24 bis 25
3/8	ISO 7/1	16,86	0,656	19W	26
3/0	NPT	16,98	0,668	18U	24 bis 25
1/2	ISO 7/1	20,96	0,825	14W	26
1/2	NPT	21,14	0,832	14U	24 bis 25
3/4	ISO 7/1	26,44	1,041	14W	26
3/4	NPT	26,49	1,043	14U	24 bis 25
1	NPT	33,14	1,305	11,5U	24 bis 25
'	ISO 7/1	33,25	1,309	11W	26
1 1/4	NPT	41,90	1,649	11,5U	24 bis 25
1 1/4	ISO 7/1	41,91	1,650	11W	26
1 1/2	ISO 7/1	47,80	1,882	11W	26
1 1/2	NPT	47,97	1,888	11,5U	24 bis 25
2	ISO 7/1	59,61	2,347	11W	26
۷	NPT	60,00	2,362	11,5U	24 bis 25

① U = Unified W = Whitworth M = Metrisch Beschriftung auf den einzelnen Swagelok Gewindelehren

Hinweis: 1/2 und 3/4 Zoll ISO 7/1 und NPT Gewinde können schwer zu identifizieren sein, weil sie eine sehr ähnlich Konstruktion haben.
Ohne optischen Vergleich ist eine positive Identifikation manchmal unmöglich. Kontaktieren Sie Ihr autorisiertes Swagelok Vertriebs- und Servicezentrum für weitere Informationen.

K Kegelig-Innengewinde

Die gemessenen Gewindedurchmesser stimmen eventuell nicht genau mit den Angaben in der Tabelle überein. Alle Gewinde haben im Hinblick auf viele Bestandteile der Gewinde Toleranzen. Die in dieser Tabelle enthaltenen Informationen sind nicht zur Verwendung als Inspektionskriterien für Gewindefittings vorgesehen. Sie dienen als Richtlinie zur Identifikation verschiedener Gewinde.

Nominale Gewinde- größe,		Nominaler Innengewinde- Durchm.			
Zoll	Kennung	mm	Zoll	Steigung ^①	Seite
1/16	NPT	6,22	0,244	27U	24 bis 25
1/16	ISO 7/1	6,56	0,258	28W	26
1/8	NPT	8,54	0,336	27U	24 bis 25
1/8	ISO 7/1	8,57	0,337	28W	26
1/4	NPT	11,07	0,436	18U	24 bis 25
1/4	ISO 7/1	11,45	0,451	19W	26
0/0	NPT	14,49	0,571	18U	24 bis 25
3/8	ISO 7/1	14,95	0,589	19W	26
1/2	NPT	17,90	0,705	14U	24 bis 25
1/2	ISO 7/1	18,63	0,734	14W	26
3/4	NPT	23,21	0,914	14U	24 bis 25
3/4	ISO 7/1	24,12	0,949	14W	26
1	NPT	29,15	1,148	11,5U	26
l '	ISO 7/1	30,29	1,193	11W	24 bis 25
1 1/4	NPT	37,87	1,491	11,5U	24 bis 25
1 1/4	ISO 7/1	38,95	1,534	11W	26
1 1/2	NPT	43,49	1,730	11,5U	24 bis 25
1 1/2	ISO 7/1	44,85	1,766	11W	26
2 1/4	NPT	55,95	2,203	11,5U	24 bis 25
2 1/4	ISO 7/1	56,66	2,231	11W	26

U = Unified W = Whitworth M = Metrisch Beschriftung auf den einzelnen Swagelok Gewindelehren

1/2 und 3/4 Zoll ISO 7/1 und NPT Gewinde können schwer zu identifizieren sein, weil sie eine sehr ähnlich Konstruktion haben. Ohne optischen Vergleich ist eine positive Identifikation manchmal unmöglich. Kontaktieren Sie Ihr autorisiertes Swagelok Vertriebs- und

Servicezentrum für weitere Informationen.

Zylindrisch—Außengewinde

Hinweis: Die gemessenen Gewindedurchmesser stimmen eventuell nicht genau mit den Angaben in der Tabelle überein. Alle Gewinde haben im Hinblick auf die vielen Bestandteile des Gewindes Toleranzen. Die in dieser Tabelle enthaltenen Informationen sind nicht zur Verwendung als Inspektionskriterien für Gewindeflittings vorgesehen. Sie dienen

als Richtlinie zur Identifikation verschiedener Gewinde.

Nominale Gewinde-		Nominaler Außengewinde- Durchm.			
größe	Kennung	mm	Zoll	Steigung ^①	Seite
		Zölli	g, Zoll		
1/16	ISO 228/1	7,72	0,304	28W	36 bis 42
1/8	ISO 228/1	9,73	0,383	28W	36 bis 42
1/0	NPSM	10,01	0,394	27U	50
1/4	ISO 228/1	13,16	0,518	19W	36 bis 42
1/4	NPSM	13,26	0,522	18U	50
5/16	UNF	7,95 bis 7,77	0,313 bis 0,301	24U	30 bis 35
3/16	UN	7,95 bis 7,75	0,313 bis 0,305	28U	30 bis 35
	UNF	9,53 bis 9,22	0,375 bis 0,363	24U	30 bis 35
3/8	NPSM	16,71	0,658	18U	50
	ISO 228/1	16,66	0,656	19W	36 bis 42
7/16	UNS	11,07 bis 10,90	0,436 bis 0,429	24U	30 bis 35
//16	UNF	11,07 bis 10,77	0,436 bis 0,424	20U	30 bis 35
	UNF	12,70 bis 12,36	0,500 bis 0,487	20U	30 bis 35
1/2	NPSM	20,78	0,818	14U	50
	ISO 228/1	20,96	0,825	14W	36 bis 42
9/16	UNF	14,29 bis 13,92	0,563 bis 0,548	18U	30 bis 35
5/8	UNF	15,88 bis 15,52	0,625 bis 0,611	18U	30 bis 35
3/8	ISO 228/1	22,91	0,902	14W	36 bis 42
11/16	UN	17,46 bis 17,19	0,688 bis 0,677	16U	30 bis 35
	UNS	19,02 bis 18,80	0,749 bis 0,740	18U	30 bis 35
3/4	UNF	19,05 bis 18,65	0,750 bis 0,734	16U	30 bis 35
3/4	NPSM	26,14	1,029	14U	50
	ISO 228/1	26,44	1,041	14W	36 bis 42
13/16	UN	20,64 bis 20,36	0,813 bis 0,802	16U	30 bis 35
	UNF	22,23 bis 21,79	0,875 bis 0,858	14U	30 bis 35
7/8	UNS	22,20 bis 21,97	0,874 bis 0,865	18U	30 bis 35
	ISO 228/1	30,20	1,189	14W	36 bis 42
① U = Unif	ied	W = Whitwork	th	M = Metriscl	n

① U = Unified W = Whitworth M = Metrisch Beschriftung auf den einzelnen Swagelok Gewindelehren

(Fortsetzung auf der nächsten Seite)

Zylindrisch—Außengewinde

Nominale Gewinde-		Nominaler Außengewinde- Durchm.			
größe	Kennung	mm	Zoll	Steigung ^①	Seite
		Zölli	g, Zoll		
	UNS	25,40 bis 24,97	1,000 bis 0,983	14U	30 bis 35
1	NPSM	32,69	1,287	11,5U	50
	ISO 228/1	33,25	1,309	11W	36 bis 42
1 1/16	UN	27,00 bis 26,64	1,063 bis 1,049	12, 14U	30 bis 35
1 1/16	UN	27,00 bis 26,70	1,063 bis 1,051	16U	30 bis 35
1 1/8	ISO 228/1	37,90	1,492	11W	36 bis 42
1 3/16	UN	30,16 bis 29,83	1,188 bis 1,174	12U	30 bis 35
	UNF	31,75 bis 31,57	1,250 bis 1,231	12U	30 bis 35
1 1/4	NPSM	41,45	1,632	11,5U	50
	ISO 228/1	41,91	1,650	11W	36 bis 42
1 5/16	UN	33,34 bis 33,00	1,313 bis 1,299	12U	30 bis 35
1 3/8	UNF	34,93 bis 34,44	1,375 bis 1,356	12U	30 bis 35
1 7/16	UN	36,51 bis 36,18	1,438 bis 1,424	12U	30 bis 35
1.1/0	NPSM	47,52	1,871	11,5U	50
1 1/2	ISO 228/1	47,80	1,882	11W	36 bis 42
1 5/8	UN	41,28 bis 40,94	1,625 bis 1,612	12, 20U	30 bis 35
1 11/16	UN	42,86 bis 42,53	1,688 bis 1,674	12U	30 bis 35
1 3/4	ISO 228/1	53,75	2,116	11W	36 bis 42
1 7/8	UN	47,63 bis 47,29	1,875 bis 1,862	12U	30 bis 35
	UN	50,80 bis 50,46	2,000 bis 1,987	12U	30 bis 35
2	ISO 228/1	59,61	2,347	11W	36 bis 42
	NPSM	59,56	2,345	11,5U	50
2 1/2	UN	63,50 bis 63,16	2,500 bis 2,487	12U	30 bis 35
		Metris	sch, mm		
8		7,88	0,310	1,0M	43 bis 49
10		9,88	0,389	1,0M	43 bis 49
10		11,85	0,467	1,5M	43 bis 49
12	Metrisch	11,88	0,468	1,0M	43 bis 49
14		13,85	0,545	1,5M	43 bis 49
16		15,85	0,624	1,5M	43 bis 49
18		17,85	0,703	1,5M	43 bis 49

 $[\]begin{tabular}{lll} \hline 0 & U = Unified & W = Whitworth & M = Metrisch \\ Beschriftung auf den einzelnen Swagelok Gewindelehren & W = Whitworth & M = Metrisch \\ \hline \end{tabular}$

(Fortsetzung auf der nächsten Seite)

Zylindrisch-Außengewinde

Nominale Gewinde-		Nominaler Außengewinde- Durchm.			
größe	Kennung	mm	Zoll	Steigung ^①	Seite
		Metris	sch, mm		
20		19,85	0,781	1,5M	
22		21,85	0,860	1,5M	
24		23,85	0,939	1,5M	
26		25,85	1,018	1,5M	
07		26,82	1,056	2,0M	
27		26,85	1,057	1,5M	
20		29,82	1,174	2,0M	
30		29,85	1,175	1,5M	
00		32,82	1,292	2,0M	
33		32,85	1,293	1,5M	
200		35,82	1,410	2,0M	
36		35,85	1,411	1,5M	
38		37,85	1,490	1,5M	43 bis
00	Metrisch	38,82	1,528	2,0M	49
39		38,85	1,530	1,5M	
40		41,82	1,647	2,0M	
42		41,85	1,648	1,5M	
45		44,82	1,765	2,0M	
45		44,85	1,766	1,5M	
40		47,82	1,883	2,0M	
48		47,85	1,884	1,5M	
50		49,82	1,961	2,0M	
		51,82	2,040	2,0M	
52		51,85	2,041	1,5M	
56		55,82	2,198	2,0M	
60		59,82	2,355	2,0M	

Beschriftung auf den einzelnen Swagelok Gewindelehren

Hinweis: 1/2 und 3/4 Zoll ISO 7/1 und NPT Gewinde können schwer zu identifizieren sein, weil sie eine sehr ähnlich Konstruktion haben. Ohne optischen Vergleich ist eine positive Identifikation manchmal unmöglich. Kontaktieren Sie Ihr autorisiertes Swagelok Vertriebs- und Servicezentrum für weitere Informationen.

Zylindrisch—Innengewinde

Hinweis: Die gemessenen Gewindedurchmesser stimmen eventuell nicht genau mit den Angaben in der Tabelle überein. Alle Gewinde haben im Hinblick auf die vielen Bestandteile des Gewindes Toleranzen. Die in dieser Tabelle enthaltenen Informationen sind nicht zur Verwendung als Inspektionskriterien für Gewindefittings vorgesehen. Sie dienen

als Richtlinie zur Identifikation verschiedener Gewinde.

Nominale Gewinde-		Nominaler Innengewinde- Durchm.			
größe	Kennung	mm	Zoll	Steigung ^①	Seite
		Zölli	g, Zoll		
1/16	ISO 228/1	6,56	0,259	28W	36 bis 42
1/0	ISO 228/1	8,57	0,337	28W	36 bis 42
1/8	NPSM	9,17	0,361	27U	50
1/4	ISO 228/1	11,45	0,451	19W	36 bis 42
1/4	NPSM	12,04	0,474	18U	50
5/16	UNF	7,04 bis 6,78	0,277 bis 0,267	24U	30 bis 35
3/16	UN	7,14 bis 6,96	0,281 bis 0,274	28U	30 bis 35
	UNF	8,64 bis 8,38	0,340 bis 0,330	24U	30 bis 35
3/8	ISO 228/1	14,95	0,589	19W	36 bis 42
	NPSM	15,44	0,608	18U	50
7/10	UNF	10,03 bis 9,73	0,395 bis 0,383	20U	30 bis 35
7/16	UNS	10,21 bis 9,96	0,402 bis 0,392	24U	30 bis 35
	UNF	11,61 bis 11,33	0,457 bis 0,446	20U	30 bis 35
1/2	ISO 228/1	18,63	0,734	14W	36 bis 42
	NPSM	19,13	0,753	14U	50
9/16	UNF	13,08 bis 12,75	0,515 bis 0,502	18U	30 bis 35
E/0	UNF	14,68 bis 14,35	0,578 bis 0,565	18U	30 bis 35
5/8	ISO 228/1	20,59	0,811	14W	36 bis 42
11/16	UN	16,10 bis 15,75	0,634 bis 0,620	16U	30 bis 35
	UNS	17,86 bis 17,53	0,703 bis 0,690	18U	30 bis 35
3/4	UNF	17,96 bis 17,32	0,707 bis 0,682	16U	30 bis 35
3/4	ISO 228/1	24,12	0,949	14W	36 bis 42
	NPSM	24,49	0,964	14U	50
13/16	UN	19,28 bis 18,92	0,759 bis 0,745	16U	30 bis 35
	UNF	20,68 bis 20,27	0,814 bis 0,798	14U	30 bis 35
7/8	UNS	21,03 bis 20,70	0,828 bis 0,815	18U	30 bis 35
	ISO 228/1	27,88	1,098	14W	36 bis 42
① U = Unif	ind	W = Whitwork		M = Metrisch	

U = Unified W = Whitworth M = Metrisch Beschriftung auf den einzelnen Swagelok Gewindelehren

(Fortsetzung auf der nächsten Seite)

Zylindrisch—Innengewinde

Nominale Gewinde-		Nominaler Innengewinde- Durchm.			
größe	Kennung	mm	Zoll	Steigung ^①	Seite
		Zölli	ig, Zoll		
15/16	UN	31,50 bis 31,04	1,240 bis 1,222	12U	30 bis 35
	UNS	23,83 bis 23,44	0,938 bis 0,923	14U	30 bis 35
1	ISO 228/1	30,29	1,193	11W	36 bis 42
	NPSM	30,63	1,206	11,5U	50
1 1/16	UN	25,15 bis 24,69	0,990 bis 0,972	12, 14U	30 bis 35
1 1/8	ISO 228/1	34,94	1,376	11W	36 bis 42
1 3/16	UN	28,32 bis 27,86	1,115 bis 1,097	12U	30 bis 35
	UNF	29,92 bis 29,45	1,178 bis 1,160	12U	30 bis 35
1 1/4	ISO 228/1	38,95	1,534	11W	36 bis 42
	NPSM	39,37	1,550	11,5U	50
1 3/8	UNF	33,10 bis 32,64	1,303 bis 1,285	12U	30 bis 35
1 7/16	UN	34,67 bis 34,21	1,365 bis 1,347	12U	30 bis 35
1.1/0	NPSM	45,47	1,780	11,5U	50
1 1/2	ISO 228/1	44,85	1,766	11W	36 bis 42
1 5/8	UN	40,18 bis 38,99	1,582 bis 1,535	12, 20U	30 bis 35
1 11/16	UN	41,02 bis 40,56	1,615 bis 1,59	12U	30 bis 35
1 3/4	ISO 228/1	50,79	2,000	11W	36 bis 42
1 7/8	UN	45,80 bis 45,35	1,803 bis 1,785	12U	30 bis 35
	UN	48,97 bis 48,51	1,928 bis 1,910	12U	30 bis 35
2	ISO 228/1	56,66	2,231	11W	36 bis 42
	NPSM	57,51	2,264	11,5U	50
2 1/2	UN	61,67 bis 61,21	2,428 bis 2,410	12U	30 bis 35
Metrisch, mm					
8		7,98	0,286	1,0M	
10		9,04	0,356	1,0M	
10	Metrisch	10,92	0,430	1,5M	43 bis 49
12		11,27	0,444	1,0M	
14		12,92	0,509	1,5M	

① U = Unified W = Whitworth M = Metrisch Beschriftung auf den einzelnen Swagelok Gewindelehren

(Fortsetzung auf der nächsten Seite)

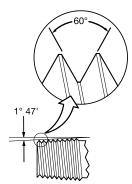
Nominale Gewinde-		Nominaler In Durc	nengewinde- chm.		
größe	Kennung	mm	Zoll	Steigung ^①	Seite
		Metris	ch, mm		
16		14,92	0,587	1,5M	
18		16,92	0,666	1,5M	
20		18,92	0,745	1,5M	
22		20,92	0,824	1,5M	
24		22,53	0,887	1,5M	
26		24,53	0,966	1,5M	
07		25,53	1,005	1,5M	
27		25,58	1,007	2,0M	
00		28,58	1,125	2,0M	
30		28,92	1,139	1,5M	
		31,53	1,241	1,5M	
33	33	31,58	1,243	2,0M	
00		34,53	1,359	1,5M	
36		34,58	1,361	2,0M	43 bis
38	Metrisch	36,53	1,438	1,5M	49
		37,53	1,477	1,5M	
39		37,58	1,479	2,0M	
		40,53	1,596	1,5M	
42		40,58	1,598	2,0M	
		43,02	1,694	2,0M	
45		43,92	1,729	1,5M	
		46,53	1,832	1,5M	
48		46,57	1,834	2,0M	
50		48,02	1,891	2,0M	
	Ì	50,02	1,969	2,0M	
52		50,23	1,989	1,5M	
56		54,57	2,149	2,0M	
60		58,02	2,284	2,0M	

 $[\]begin{tabular}{lll} \hline 0 & U = Unified & W = Whitworth & M = Metrisch \\ Beschriftung auf den einzelnen Swagelok Gewindelehren \\ \end{tabular}$

Kegelige Gewinde

Die folgenden Merkmale und Informationen sollten bei der Verwendung von kegeligen Gewinden berücksichtigt werden:

- Die Dichtung findet zwischen den kegeligen Gewinden statt.
- Bei kegeligen Rohrgewinden ist immer ein Dichtmittel erforderlich, um sie gegen Systemmedien abzudichten und ein Fressen des Gewindes zu verhindern.
- Mit Produkten wie Swagelok PTFE-Band, SWAK®, ein anaerobes Gewindedichtmittel mit PTFE, und PTFEfreiem Gewindedichtmittel lassen sich Schmier- und Dichtfunktionen erzielen. Wenn zwei Metallflächen ohne Schmierung aneinander getrieben werden, kann es zum Fressen kommen.
- Nach Befolgen der Anleitung zur Anwendung von Dichtund Schmiermittel kann das Gewinde nach eigenem Ermessen festgezogen werden. Es gibt kein bestimmtes Drehmoment oder eine Anzahl von Umdrehungen.

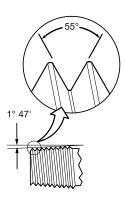

Kegelige Gewinde

NPT

(auch als ASME B1.20.1 bekannt)

Merkmale

- Kegeliges Gewinde (1° 47')
- Gewindegrund und Gewindespitzen sind flach
- 60°-Winkel
- Die Steigung wird in Gewindegänge pro Zoll gemessen



ISO 7/1

(auch als EN 10226-1 und JIS B0203 bekannt)

Merkmale

- Kegeliges Gewinde (1° 47')
- Gewindegrund und Gewindespitzen sind abgerundet
- 55°-Winkel
- Die Steigung wird in Gewindegänge pro Zoll gemessen

Kegeligen Gewinden

- NPT
- NPT mit O-Ring-Dichtung
- BSPT

N		Gewindegröße - Steigung	
Nenngröße Zoll	NPT	NPT mit O-Ring-Dichtung	ISO 7/1
1/16	1/16-27	1/16-27	1/16-28
1/8	1/8-27	1/8-27	1/8-28
1/4	1/4-18	1/4-18	1/4-19
3/8	3/8-18	3/8-18	3/8-19
1/2	1/2-14	1/2-14	1/2-14
3/4	3/4-14	3/4-14	3/4-14
1	1-11,5	1-11,5	1-11
1 1/4	1 1/4-11,5	1 1/4-11,5	1 1/4-11
1 1/2	1 1/2-11,5	1 1/2-11,5	1 1/2-11
2	2-11,5	2-11,5	2-11

Hinweis: 1/2 und 3/4 Zoll BSPT und NPT Gewinde können schwer zu identifizieren sein, weil sie eine sehr ähnlich Konstruktion haben. Ohne optischen Vergleich ist eine positive Identifikation manchmal unmöglich. Kontaktieren Sie Ihr autorisiertes Swagelok Vertriebsund Servicezentrum für weitere Informationen.

Kegeligen Gewinden

NPT

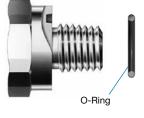
	Zutreffende Normen			
Dichtstelle	Fittings Gewinde			
Am Gewinde (Dichtmittel erforderlich)	NPT	ASME B1.20.1		

Außengewinde: Das Außengewindeende hat ein

1° 47' kegeliges Gewinde mit einem Gewindewinkel von 60°.

Innengewinde: Das Innengewindeende hat ein

1° 47' kegeliges Gewinde mit einem Gewindewinkel von 60°.


Dichtung: Die Dichtung findet auf dem

kegeligen Gewinde statt.

Endanschlüsse mit Kegeligen Gewinden

NPT mit O-Ring-Dichtung

	Zutreffende Normen			
Dichtstelle	Fittings Gewinde			
0-Ring-Komprimierung	Keine	ASME B1.20.1		

Außengewinde: Das Außengewindeende hat ein

kleineres NPT-Gewinde und eine O-Ring-Vertiefung an der Schulter

des Sechskants.

Innengewinde: Das Innengewindeende hat ein

NPT-Gewinde und eine glatte,

flache Oberfläche.

Dichtung: Die Dichtung entsteht durch die

Komprimierung des O-Rings an der Stirn der Innengewindekomponente.

Kegeligen Gewinden

BSPT

JIS R und JIS Rc

DIN 3852 Teil 2, Typ C

	Zutreffende Normen			
Dichtstelle	Fittings	Gewinde		
Am Gewinde (Dichtmittel erforderlich)	JIS B8363 BS 5200 DIN 3852 Teil 2	ISO 7/1		

Außengewinde: Das Außengewindeende hat ein

1° 47' kegeliges Gewinde mit einem Gewindewinkel von 55°.

Innengewinde: Das Innengewindeende hat ein

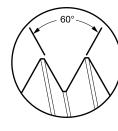
1° 47' kegeliges Gewinde mit einem Gewindewinkel von 55°.

Dichtung: Die Dichtung findet auf dem

kegeligen Gewinde statt.

Zylindrische Gewinde

Es gibt weltweite viele Endanschlüsse mit zylindrischen Gewinden. Allerdings haben diese in der Regel alle eine dieser drei gängigen Gewindearten: ASME B1.1 (unified Schraubengewinde), ISO 228/1 oder ISO 261 zylindrische Gewinde.


Da die Gewinde der zusammentreffenden Fittings parallel zueinander stehen kommt es zu keiner Interferenz zwischen Flanken, Spitzen und Gewindegrund. Daher muss die Dichtung mit einem Dichtring, O-Ring oder einer Art von Metall-zu-Metall-Kontakt hergestellt werden. Die Verwendung von Dichtmitteln ist an zylindrischen Gewinden nicht erforderlich oder empfohlen. Je nach Art der Anwendung und Werkstoffen kann ein Gewindeschmiermittel verwendet werden.

Unified Schraubengewinde

(auch als ASME B1.1 bekannt)

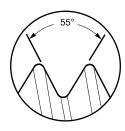
Merkmale

- Zylindrisches Gewinde
- Gewindegrund und Gewindespitzen sind flach
- 60° Flankenwinkel
- Durchmesser und Steigung werden in Zoll gemessen

Gewindeserien

- UN: Außen- und Innengewinde
- UNR: Nur Außengewinde (Spitze abgerundet)
- UNC/UNRC: Grobgewindeserie
- UNF/UNRF: Feingewindeserie
- UNEF/UNREF: Extra-Feingewindeserie
- UNS/UNRS: Ausgewählte Spezialkombinationen von Durchmessern, Steigungen und Eingriffslängen

nhand

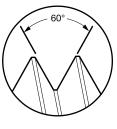

Zylindrische Gewinde

ISO 228/1

(auch bekannt als BSPP, JIS B0202)

Merkmale

- Zylindrisches Gewinde
- Gewindegrund und Gewindespitzen sind abgerundet
- 55° Flankenwinkel
- Gewinde wird in Zoll gemessen

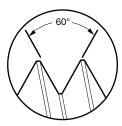


Metrisch

(auch bekannt als ISO 261, JIS B0205, ASME B1.13M)

Merkmale

- Zylindrisches Gewinde
- Gewindegrund und Gewindespitzen sind flach
- 60° Flankenwinkel
- Gewinde wird in Millimetern gemessen



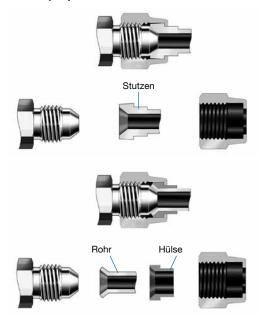
NPSM

(auch als ASME B1.20.1 bekannt)

Merkmale

- Zylindrisches Gewinde
- Gewindegrund und Gewindespitzen sind flach
- 60° Flankenwinkel
- Gewinde wird in Zoll gemessen

Unified Schraubengewinden


- SAE 37° (JIC)
- SAE Zylindrisches Gewinde mit O-Ring-Erhebung
- Zylindrisches Gewinde mit O-Ring-Dichtung
- **■** SAE 45°
- SAE J1453 O-Ring-Stirndichtung
- ISO 8434-3
- SAE 42° Innenkonus (Inverted Flare)

SAE (Society of Automotive Engineers) Fitting-Typen

	Gewindegröße - Steigung					
Nenn- größe Zoll	37°	O-Ring- Erhebung	O-Ring- Dichtung	45°	J1453	42° Innenkonus (Inverted Flare)
1/8	5/16-24	5/16-24	5/16-24	5/16-24	_	5/16-28
3/16	3/8-24	3/8-24	3/8-24	3/8-24	_	3/8-24
1/4	7/16-20	7/16-20	7/16-20	7/16-20	9/16-18	7/16-24
5/16	1/2-20	1/2-20	1/2-20	1/2-20	_	1/2-20
3/8	9/16-18	9/16-18	9/16-18	5/8-18	11/16-16	5/8-18
7/16	_	_	_	11/16-16	_	11/16-16
1/2	3/4-16	3/4-16	3/4-16	3/4-16	13/16-16	3/4-16
5/8	7/8-14	7/8-14	7/8-14	7/8-14	1-14	7/8-14
3/4	1 1/16-12	1 1/16-12	1 1/16-12	1 1/16-14	1 3/16-12	1 1/16-1
7/8	1 3/16-12	1 3/16-12	1 3/16-12	1 1/4-12	_	1 1/4-12
1	1 5/16-12	1 5/16-12	1 5/16-12	_	1 7/16-12	_
1 1/4	1 5/8-12	1 5/8-12	1 5/8-12	_	1 11/16-12	_
1 1/2	1 7/8-12	1 7/8-12	1 7/8-12	_	2-12	_
2	2 1/2-12	2 1/2-12	2 1/2-12	_	_	_

Unified Schraubengewinden

SAE 37° (JIC)

	Zutreffende Normen			
Dichtstelle	Fittings	Gewinde		
Aufeinandertreffende 37° Konus-Oberflächen	SAE J514	ASME B1.1		

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und einen

37° Konus.

Innengewinde: Das Innengewindeende hat ein

zylindrisches Gewinde und eine am Rohr befestigte Mutter mit einem 37° Innenkegel oder einem 37° Kegelstutzen.

Die Dichtung erfolgt zwischen dem

Außengewindekonus und dem Innendurchmesser des Kegelstutzens bzw.

des gebördelten Rohrs.

Unified Schraubengewinden

SAE Zylindrisches Gewinde mit O-Ring-Erhebung

	Zutreffende Normen			
Dichtstelle	Fittings Gewinde			
0-Ring-Komprimierung	SAE J1926, ISO 11926 ASME B1.1			

Außengewinde: Das Außengewindeende hat ein

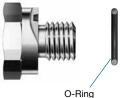
zylindrisches Gewinde und einen

O-Ring.

Innengewinde: Das Innengewindeende hat ein zylindrisches Gewinde und einen

Konus für den O-Ring.

Die Dichtung entsteht durch die Dichtung:


Komprimierung des O-Rings in

den Konus.

Unified Schraubengewinden

Zylindrisches Gewinde mit O-Ring-Dichtung

	Zutreffende Normen			
Dichtstelle	Fittings Gewinde			
0-Ring-Komprimierung	Keine	ASME B1.1		

Außengewinde: Das Außengewindeende hat ein

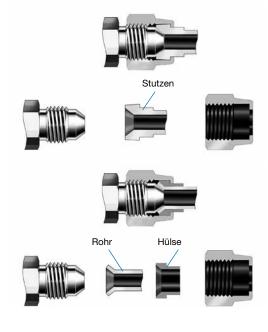
> zylindrisches Gewinde und eine O-Ring-Vertiefung an der Schulter

des Sechskants.

Innengewinde: Das Innengewindeende hat ein

zylindrisches Gewinde und eine

glatte, flache Oberfläche.


Dichtung: Die Dichtung entsteht durch die

Komprimierung des O-Rings an der

Stirn der Innengewindekomponente.

Unified Schraubengewinden

SAE 45°

	Zutreffende Normen			
Dichtstelle	Fittings	Gewinde		
Aufeinandertreffende 45° Kegel-Oberfläche	SAE J512 SAE J513	ASME B1.1		

Außengewinde:

Das Außengewindeende hat ein zylindrisches Gewinde und einen

45° Konus.

Innengewinde:

Das Innengewindeende hat ein zylindrisches Gewinde und eine am

Rohr befestigte Mutter mit einem 45° Innenkegel oder einem 45° Kegelstutzen.

Dichtung:

Die Dichtung erfolgt zwischen dem Außengewindekonus und dem

Innendurchmesser des Kegelstutzens

bzw. des gebördelten Rohrs.

nhand

Endanschlüsse mit Unified Schraubengewinden

SAE J1453 O-Ring-Stirndichtung

ISO 8434 -3

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
0-Ring-Komprimierung an Fittingstirnfläche	SAE J1453 ISO 8434 -3	ASME B1.1	

Außengewinde: Das Außengewindeende hat ein

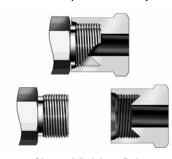
zylindrisches Gewinde und einen O-Ring in einer Vertiefung an der

Stirnseite des Fittings.

Innengewinde: Das Innengewindeende hat ein

zylindrisches Gewinde. Ein Stutzen mit flacher Stirn wird von einer Druckschraube, die in den Körper geschraubt wird, an den Körper

gedrückt.


Dichtung: Die Dichtung entsteht durch die

Komprimierung des O-Rings zwischen

den Flächen des Fittings.

Unified Schraubengewinden

SAE 42° Innenkonus (Inverted Flare)

Ohne gebördeltem Rohr

Mit gebördeltem Rohr

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
Aufeinandertreffende konusförmige und gebördelte Oberflächen	SAE J512	ASME B1.1	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und einen 42°

oder 45° Konus.

Innengewinde: Das Innengewindeende hat ein

zylindrisches Gewinde und einen Sitz oder Stutzen mit 42° Innenkonus

(inverted flare).

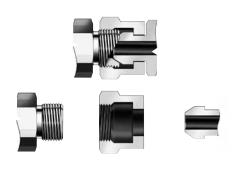
Dichtung: Die Dichtung erfolgt zwischen dem

Kegel im Außengewindefitting und dem gebördelten Rohr oder direkt am Sitz des

Innenkonus (inverted flare).

ISO 228/1-Gewinden

- BSPP (British Standard Pipe Parallel) JIS Parallel Pipe
- JIS 30° Konus
- DIN EN 837-1 und DIN EN 837-3, Typ B
- DIN 3852 Teil 2, Typ A
- DIN 3852 Teil 2, Typ B
- BS EN ISO 1179


	Gewindegröße - Steigung, Zoll					
Nenngröße Zoll	BSPP ^①	JIS 30° Konus	DIN EN 837-1, DIN EN 837-3	DIN 3852 Teil 2, Typ A	DIN 3852 Teil 2, Typ B	BS EN ISO 1179
1/16	_	_	_	_	1/16-28	_
1/8	1/8-28	_	1/8-28	1/8-28	1/8-28	1/8-28
1/4	1/4-19	1/4-19	1/4-19	1/4-19	1/4-19	1/4-19
3/8	3/8-19	3/8-19	_	3/8-19	3/8-19	3/8-19
1/2	1/2-14	1/2-14	1/2-14	1/2-14	1/2-14	1/2-14
5/8	5/8-14	_	_	5/8-14	5/8-14	5/8-14
3/4	3/4-14	3/4-14	_	3/4-14	3/4-14	3/4-14
7/8	_	_	_	7/8-14	7/8-14	_
1	1-11	1-11	_	1-11	1-11	1-11
1 1/8	_	_	_	1 1/8-11	1 1/8-11	_
1 1/4	1 1/4-11	1 1/4-11	_	1 1/4-11	1 1/4-11	1 1/4-11
1 1/2	1 1/2-11	1 1/2-11	_	1 1/2-11	1 1/2-11	1 1/2-11
1 3/4	_	_	_	1 3/4-11	1 3/4-11	_
2	2-11	2-11	_	2-11	2-11	2-11

① Auch als JIS Parallel Pipe bekannt.

Endanschlüsse mit ISO 228/1-Gewinden

BSPP (British Standard Pipe Parallel)

JIS Parallel Pipe

	Zutreffende Normen	
Dichtstelle	Fittings	Gewinde
Aufeinander treffende 30° Konus-Oberflächen oder O-Ring-Komprimierung	BS 5200 JIS B8363	ISO 228/1

BSPP und JIS Parallel Pipe Fittings sind in Bezug auf Konstruktion, Aussehen und Abmessungen identisch.

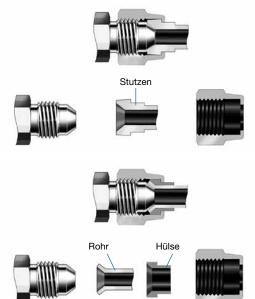
Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und einen

30° Konus.

Innengewinde: Das Innengewindeende ist eine Mutter

mit zylindrischem Gewinde, die auf einem 30° Kegelstutzen sitzt.


Dichtuna: Die Dichtung erfolgt zwischen dem

Konus des Außengewindefittings

und dem 30° Kegelstutzen.

Endanschlüsse mit ISO 228/1-Gewinden

JIS 30° Konus

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
Aufeinandertreffende 30° Kegel- oder Bördel- Oberflächen	JIS B8363	ISO 228/1	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und einen

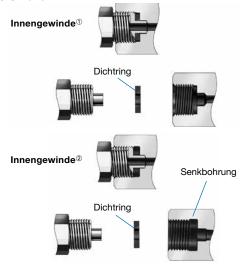
30° Konus.

Innengewinde: Das Innengewindeende hat ein

zylindrisches Gewinde und eine am Rohr befestigte Mutter mit einem 30° Bördel oder einem 30° Kegelstutzen.

Dichtung: Die Dichtung erfolgt zwischen dem

Außengewindekonus und dem


Innendurchmesser des Kegelstutzens

bzw. des gebördelten Rohrs.

Endanschlüsse mit ISO 228/1-Gewinden

DIN EN 837-1 und DIN EN 837-3, Typ B

JIS B0202

Zutreffende Normen		
Fittings	Gewinde	
DIN EN 837-1, 837-3	ISO 228/1, JIS B0202	
	Fittings	

Außengewinde: Der Außengewindefitting hat ein zylindrisches Gewinde und einen

Zapfen, der durch den Innendurchmesser des Dichtrings passt.

①Innengewinde: Die Innengewindekomponente hat

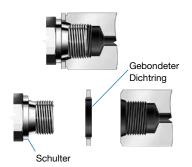
ein zylindrisches Gewinde und eine Senkbohrung im ID des Fittings für

den Dichtring.

②Innengewinde: Die Innengewindekomponente hat ein zylindrisches Gewinde und eine

senkbohrung im ID des Fittings für den Dichtring. Die Senkbohrung ist größer, um sicherzustellen, dass das Außengewinde den Dichtring in eine

dichtende Position presst.


Dichtung:

Die Dichtung entsteht, indem der
Dichtring zwischen der Außen- und
der Innengewindekomponente

komprimiert wird.

Endanschlüsse mit ISO 228/1-Gewinden

DIN 3852 Teil 2, Typ A

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
Dichtungskomprimierung	DIN 3852 Teil 2	ISO 228/1	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und eine

gerade Schulter.

Innengewinde: Das Innengewindeende hat ein

zylindrisches Gewinde und eine

glatte, flache Oberfläche.

Dichtung: Die Dichtung entsteht, indem der

Dichtring zwischen der geraden Schulter und der flachen, glatten Oberfläche komprimiert wird.

Dichtring: Dieser Dichtring könnte entweder

ganz aus Metall sein oder aus Metall mit gebondetem Elastomer

am Innendurchmesser.

ISO 228/1-Gewinden

DIN 3852 Teil 2, Typ B

Metalldichtring

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
Metall-Metall-Dichtring	DIN 3852 Teil 2	ISO 228/1	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und eine

abgeschrägte Schulter.

Innengewinde: Das Innengewindeende hat ein

zylindrisches Gewinde und eine glatte,

flache Oberfläche.

Dichtung: Die Dichtung entsteht, indem der

Dichtring zwischen der abgeschrägten Schulter und der flachen, glatten Oberfläche komprimiert wird.

Dichtring: Wir empfehlen die Verwendung eines

Metalldichtrings.

Endanschlüsse mit ISO 228/1-Gewinden

BS EN ISO 1179

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
O-Ring-Komprimierung	BS EN ISO 1179	ISO 228/1	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und einen

O-Ring.

Innengewinde: Das Innengewindeende hat ein

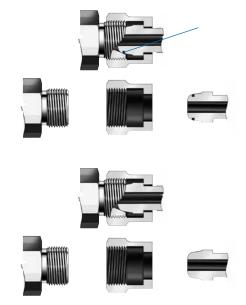
zylindrisches Gewinde und einen

Konus für den O-Ring.

Dichtung: Die Dichtung entsteht durch die

Komprimierung des O-Rings in

den Konus.


Metrischen (ISO 261) Gewinden

- DIN 7631
- JIS Parallel Pipe Metrisch
- DIN EN 837-1 und DIN EN 837-3, Typ B
- DIN 3852 Teil 1, Typ A
- DIN 3852 Teil 1, Typ B
- ISO 6149-1, ISO 6149-2 und ISO 6149-3

	Gewindegröße - Steigung					
Nenngröße mm	DIN 7631	JIS Parallel Pipe Metrisch	DIN EN 837-1, DIN EN 837-3	DIN 3852 Teil 1, Typ A	DIN 3852 Teil 1, Typ B	ISO 6149-1, 6149-2, 6149-3
M8	_	-	_	M8 × 1	M8 × 1	M8 × 1
M10	M10 × 1	1	M10 × 1	M10 × 1	M10 × 1	M10 × 1
M12	M12 × 1,5	-	M12 × 1,5	M12 × 1,5	M12 × 1,5	M12 × 1,5
M14	M14 × 1,5	M14 × 1,5	_	M14 × 1,5	M14 × 1,5	M14 × 1,5
M16	M16 × 1,5	_	_	M16 × 1,5	M16 × 1,5	M16 × 1,5
M18	M18 × 1,5	M18 × 1,5	_	M18 × 1,5	M18 × 1,5	M18 × 1,5
M20	_	_	M20 × 1,5	M20 × 1,5	M20 × 1,5	M20 × 1,5
M22	M22 × 1,5	M22 × 1,5	_	M22 × 1,5	M22 × 1,5	M22 × 1,5
M24	_	_	_	M24 × 1,5	M24 × 1,5	_
M26	M26 × 1,5	_	_	M26 × 1,5	M26 × 1,5	M26 × 1,5
M27	_	M27 × 2,0	_	M27 × 2,0	M27 × 2,0	M27 × 2,0
	M30 × 1,5	_	_	M30 × 1,5	M30 × 1,5	_
M30	_		_	M30 × 2,0	M30 × 2,0	_
M33	_	M33 × 2,0	_	M30 × 2,0	M30 × 2,0	M30 × 2,0
	_	_	_	M36 × 1,5	M36 × 1,5	_
M36	_		_	M36 × 2,0	M36 × 2,0	_
M38	M38 × 1,5	_	_	M38 × 1,5	M38 × 1,5	_
M39	_		_	M39 × 1,5	M39 × 1,5	_
	_	M42 × 1,5	_	M42 × 2,0	M42 × 2,0	M42 × 2,0
M42	_	_	_	M42 × 2,0	M42 × 2,0	_
	M45 × 2,0		_	M45 × 1,5	M45 × 1,5	_
M45	_		_	M45 × 2,0	M45 × 2,0	_
	_		_	M48 × 1,5	M48 × 1,5	M48 × 2,0
M48	_	_	_	M48 × 2,0	M48 × 2,0	_
M50	_	M50 × 2,0	_	_	_	M50 × 2,0
	M52 × 1,5	_	_	M52 × 1,5	M52 × 1,5	_
M52	_	_	_	M52 × 2,0	M52 × 2,0	_
M56	_	_	_	M56 × 2,0	M56 × 2,0	_
M60	_	M60 × 2,0	_	M60 × 2,0	M60 × 2,0	M60 × 2,0

Metrischen (ISO 261) Gewinden

DIN 7631

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
Konusstutzen	DIN 7631	Metrisch (ISO 261)	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und einen

30° Konus.

Innengewinde: Das Innengewindeende ist eine Mutter

mit zylindrischem Gewinde, die auf einem Außenkegelstutzen sitzt. Der Außenkegelstutzen kann einen O-Ring

enthalten.

Dichtung: Die Dichtung erfolgt zwischen dem

Konus des Außengewindefittings und dem Außenkegelstutzen.

Endanschlüsse mit Metrischen (ISO 261) Gewinden

JIS Parallel Pipe Metrisch

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
Aufeinandertreffende 30° Konus-Oberflächen	JIS B8363	Metrisch (ISO 261)	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und einen

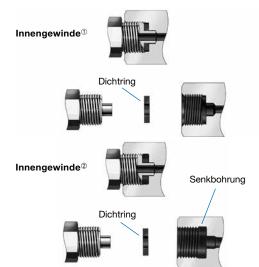
30° Konus.

Dichtung:

Innengewinde: Das Innengewindeende ist eine Mutter

mit zylindrischem Gewinde, die auf

einem 30° Kegelstutzen sitzt.


Die Dichtung erfolgt zwischen dem

Kegel des Außengewindefittings und

dem 30° Kegelstutzen.

Metrischen (ISO 261) Gewinden

DIN EN 837-1 und DIN EN 837-3, Typ B

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
Dichtungskomprimierung	DIN EN 837-1 und DIN EN 837-3	Metrisch (ISO 261)	

Außengewinde: Der Außengewindefitting hat ein

zylindrisches Gewinde und einen Zapfen, der durch den Innendurchmesser des Dichtrings passt.

①Innengewinde: Die Innengewindekomponente hat

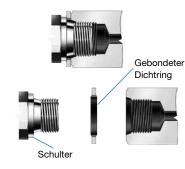
ein zylindrisches Gewinde und eine Senkbohrung im ID des Fittings für

den Dichtring.

②Innengewinde: Die Innengewindekomponente hat ein zylindrisches Gewinde und eine

Senkbohrung im ID des Fittings für den Dichtring. Die Senkbohrung ist größer, um sicherzustellen, dass das Außengewinde den Dichtring in eine dichtende

Position presst.


Dichtung: Die Dichtung entsteht, indem der

Dichtring zwischen der Außen- und der Innengewindekomponente

komprimiert wird.

Endanschlüsse mit Metrischen (ISO 261) Gewinden

DIN 3852 Teil 1, Typ A

	Zutreffende Normen		
Dichtstelle	Fittings Gewinde		
Dichtungskomprimierung	DIN 3852 Teil 1	Metrisch (ISO 261)	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und eine

gerade Schulter.

Innengewinde: Das Innengewindeende hat ein

zylindrisches Gewinde und eine

glatte, flache Oberfläche.

Dichtung: Die Dichtung entsteht, indem der

Dichtring zwischen der geraden Schulter und der flachen, glatten Oberfläche komprimiert wird.

Dichtring: Dieser Dichtring könnte entweder

ganz aus Metall sein oder aus Metall

mit gebondetem Elastomere am

Innendurchmesser.

Metrischen (ISO 261) Gewinden

DIN 3852 Teil 1, Typ B

Metalldichtring

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
Metall-Metall-Dichtring	DIN 3852 Teil 1	Metrisch (ISO 261)	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und eine

abgeschrägte Schulter.

Innengewinde: Das Innengewindeende hat ein zylindrisches Gewinde und eine glatte,

flache Oberfläche.

Dichtung: Die Dichtung entsteht, indem der

Dichtring zwischen der abgeschrägten

Schulter und der flachen, glatten Oberfläche komprimiert wird.

Dichtring: Wir empfehlen die Verwendung

eines Metalldichtrings.

Metrischen (ISO 261) Gewinden

ISO 6149-1, ISO 6149-2 UND ISO 6149-3

	Zutreffende Normen		
Dichtstelle	Fittings	Gewinde	
0-Ring-Komprimierung	ISO 6149-1, ISO 6149-2, ISO 6149-3	Metrisch (ISO 261)	

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und einen

O-Ring.

Innengewinde: Das Innengewindeende hat ein

zylindrisches Gewinde und einen

Konus für den O-Ring.

Dichtung: Die Dichtung entsteht durch die

Komprimierung des O-Rings in

den Konus.

and

Endanschlüsse mit

NPSM-Gewinden

NPSM

Zutreffende Normen			
Fittings	Gewinde		
NPSM	ASME B1.20.1		
NPSM	ASME B1.20.1		

Nenngröße, Zoll	NPSM Gewindegröße - Steigung
1/8	1/8-27
1/4	1/4-18
3/8	3/8-18
1/2	1/2-14
3/4	3/4-14
1	1-11,5
1 1/4	1 1/4-11,5
1 1/2	1 1/2-11,5
2	2-11,5

Außengewinde: Das Außengewindeende hat ein

zylindrisches Gewinde und einen

30° Konus.

Innengewinde: Das Innengewindeende ist eine

Mutter mit zylindrischem Gewinde, die auf einem 30° Kegelstutzen sitzt.

Die Dichtung erfolgt zwischen dem

Kegel des Außengewindefittings und

dem 30° Kegelstutzen.

Endanschluss Seite Gewindenorm Seite BSP (British Standard Pipe) BSPP (5200) 36 ISO 228/1 27 BS EN ISO 1179 41 ISO 228/1 27 DIN (Deutsches Institut für Normung e.V.) DIN EN 837-1 und 38 ISO 228/1 27 DIN EN 837-3, Typ B DIN EN 837-1 und 45 Metrisch (ISO 261) 27 DIN EN 837-3. Typ B DIN 3852 Teil 1, Typ A 46 Metrisch (ISO 261) DIN 3852 Teil 1, Typ B 47 Metrisch (ISO 261) 27 DIN 3852 Teil 2, Typ A 39 ISO 228/1 ISO 228/1 DIN 3852 Teil 2, Typ B 40 DIN 3852 Teil 2, Typ C 25 ISO 7/1 21 ISO 6149-1, ISO 6149-2 und ISO 48 Metrisch (ISO 261) 6149-3 27 DIN 7631 43 Metrisch (ISO 261) JIS (Japanese Industrial Standard) JIS 30° Konus (B8363) 37 ISO 228/1 JIS (B8363) 36 ISO 228/1 27 44 JIS (B8363) Metrisch (ISO 261) JIS (B8363) 25 ISO 7/1 NPSM (National Pipe Straight Mechanical) NPSM 49 ASME B1.20.1 27 **NPT (National Pipe Taper)** NPT 23 ASMF B1 20 1 21 SAE (Society of Automotive Engineers) SAE J1453 O-Ring-Stirndichtung 33 SAE 37° (JIC) (J514) 29 SAE 42° Inverted Flare (J512) 34 ASME B1.1 26 SAE 45° (J512, J513) 32 SAE Zylindrisches Gewinde mit 30 O-Ring-Erhebung (J1926)

Endanschluss-zu-Gewinde-Matrix

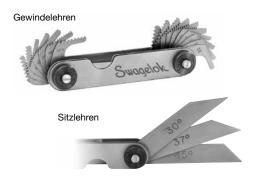
Gewindenorm	Seite	Endanschluss	Seite			
ISO 7/1						
EN 10226-1	22	DIN 3852 Teil 2, Typ C	26			
JIS B0203	22	JIS (B8363)				
	ISO 228	/1				
ISO 228/1	28	BSPP (5200)	37			
		DIN EN 837-1 und DIN EN 837-3, Typ B	39			
		DIN 3852 Teil 2, Typ A	40			
		DIN 3852 Teil 2, Typ B	41			
HO DOGGO		JIS 30° Konus (B8363)	38			
JIS B0202		JIS (B8363)	37			
	Metriso	h				
ISO 261	28	DIN EN 837-1 und DIN EN 837-3, Typ B	46			
		DIN 3852 Teil 1, Typ A	47			
		DIN 3852 Teil 1, Typ B	48			
ASME B1.13M		DIN 3852 Teil 1	49			
ASIVIE DT. TSIVI		DIN 7631	44			
JIS B0205		JIS (B8363)	45			
ASME B1.20.1						
40M5 P4 00 4	28	NPSM	50			
ASME B1.20.1	22	NPT	24			
Unified Schraubengewinde ASME B1.1						
ASME B1.1	27	SAE J1453 O-Ring- Stirndichtung	34			
		SAE 37° (JIC) (J514)	30			
		SAE 42° Inverted Flare (J512)	35			
		SAE 45° (J512, J513)	33			
		SAE Zylindrisches Gewinde mit O-Ring-Erhebung (J1926)	31			

Gewinde-zu-Endanschluss-Matrix

Hilfsmittel zur Gewindeidentifikation

Messschieber

Mit dem Messschieber wird der Gewindedurchmesser bestimmt. (Der Endanwender ist für die Messschieber-Kalibrierung verantwortlich.)



Sitz- und Gewindelehre

Sitz- und Gewindelehren sind in einem Werkzeug kombiniert.

Mit der Sitzlehre werden die Sitzwinkel des Endanschlusses von 45°, 37° und 30° bestimmt.

Mit der Gewindelehre wird die Gewindesteigung bestimmt. Beachten Sie, dass es unterschiedliche Gewindelehren gibt - Unified (Gewindegänge pro Zoll), Whitworth (Gewindegänge pro Zoll) oder Metrisch (Millimeter pro Gewindegang), je nach Markierung auf der Rückseite der Gewindelehre.

Glossar

ASME B1.1. Siehe Unified Schraubengewinde.

B1.20.1. Siehe NPT. B1.13M. Siehe ISO 261.

BSPP British Standard Pipe Parallel nach ISO

228/1.

BSPT British Standard Pipe Tapered nach EN

10226-1. Siehe ISO 7/1.

DIN Deutsches Institut für Normung e.V.

ISO 228/1 International Standards Organization

Specification 228/1, zylindrische Gewinde, Referenznorm: BSPP, DIN 259,

JIS B0202.

ISO 261 International Standards Organization

Specification 261, zylindrische Gewinde, metrische Abmessungen, oft als "rein metrischer Fitting" bezeichnet, JIS

B0205.

ISO 7/1 International Standards Organization

Specification 7/1, kegeliges Gewinde, zöllige Abmessungen, Referenznorm: EN 10226-1 (nur Außengewinde),

JIS B0203.

013 00203.

JIS Japanese Industrial Standard.

JIS B0202 Japanese Industrial Standard B0202.

Siehe ISO 228/1.

JIS B0203 Japanese Industrial Standard B0203.

Siehe ISO 7/1.

JIS B0205 Japanese Industrial Standard B0205.

Siehe ISO 261.

Metrisch Siehe ISO 261.

Metrisch zylindrisch Siehe ISO 261.

Glossar

NPT National Pipe Tapered.

SAE Society of Automotive Engineers.

Steigung In diesem Handbuch bezieht sich

der Begriff Steigung bei zölligen Gewinden und Rohrgewinden auf die Gewindegänge pro Zoll, nicht auf den Abstand zwischen den Gewindegängen. Bei allen metrischen

Schraubengewinden wird mit dem Begriff Steigung der Abstand zwischen nebeneinanderliegenden Gewindegängen angegeben.

UN Unified Constant-Pitch Gewindeserie.

UNC/UNRC Unified Coarse Gewindeserie

(Grobgewinde).

UNEF/UNREF Unified Extra-Fine Gewindeserie

(Extrafein-Gewinde).

UNF/UNRF Unified Fine Gewindeserie (Feingewinde).

UNR Nur Außengewinde.

UNS/UNRS Ausgewählte Spezialkombinationen

von Durchmessern, Steigungen und

Eingriffslängen.

Unified Siehe ASME B1.1 und ASME B1.20.1.

Whitworth Siehe ISO 228/1 und ISO 7/1.

Sichere Produktauswahl

Bei der Auswahl von Produkten muss das gesamte Systemdesign berücksichtigt werden, um eine sichere, störungsfreie Funktion zu gewährleisten. Der Systemdesigner und der Benutzer sind für Funktion, Materialverträglichkeit, entsprechende Leistungsdaten und Einsatzgrenzen sowie für die vorschriftsmäßige Handhabung, den Betrieb und die Wartung verantwortlich. Der gesamte Kataloginhalt muss geprüft werden, um sicherzugehen, dass der Systementwickler und der Benutzer eine sichere Produktauswahl treffen.

⚠ WARNUNG

Swagelok-Produkte oder -Bauteile, die nicht den industriellen Entwicklungsnormen entsprechen, einschließlich Swagelok Rohrverschraubungen und Endanschlüsse nicht durch die anderer Hersteller austauschen oder mit den Produkten oder Bauteilen anderer Hersteller vermischen.

Garantieinformationen

Swagelok Produkte fallen unter die eingeschränkte Swagelok Nutzungsdauergarantie. Eine Kopie erhalten Sie auf der Website swagelok.de oder von Ihrem autorisierten Swagelok-Vertreter.

